SOIL HEALTH INITIATIVES IN NEW YORK: BUILDING MOMENTUM

Fishkill Farms, East Fishkill, New York

PETER LEHNER

ELIZABETH HENDERSON

EARTHJUSTICE

NOFA-NY
NORTHEAST ORGANIC FARMING
ASSOCIATION OF NEW YORK
AGRICULTURE IN NEW YORK STATE:
INDUSTRIAL AND CONCENTRATED

- 23% of land use is agricultural
 - 4.2 million acres of crops and
 - 2.7 million acres of grazing land

- 35,500 farms
 - 3% account for 60% production
 (by market value of sales)

- 19,900 operations with animals
 - 3% produce 85% of beef cattle,
 dairy cows, swine, poultry
IMPACTS OF INDUSTRIAL AGRICULTURE IN NY

• Harmful algal blooms caused by manure runoff from NY CAFOs
 • Example: 2014 spill in Lake Owasco

• Nitrogen fertilizer contamination
 • 30+ NY drinking water systems/utilities with >5 ppm (above health guideline)

• 4% of all GHG emissions
 • 23% of all methane; 75% of all nitrous oxide

• Wildlife habitat loss from cropland conversion
 • 163,000 new cropland acres; 1,381 acres wetlands converted (2008 - 2012)
CLIMATE CHANGE THREATENS NY AGRICULTURE

- Droughts and floods
- Heat waves
 - $24.9M annual loss for NY dairy with projected temp. increase
- Hurricanes and extreme storms
 - $4.5M+ costs for NY farms after Hurricane Irene
- Pests, weeds, disease
 - Stewart’s wilt, late blight
- Water supply
- Nutritional value
- Yield reductions

Crop damage in New Paltz, NY after Hurricane Irene (2011)
CURRENT AGRICULTURE SYSTEM IS NOT THE ONLY OPTION

• Current system is profoundly shaped by policy (especially Farm Bill; environmental law exemptions)

• Industrial, chemical-dependent monoculture systems are not necessary to “feed the world”
 • Organic and agro-ecological practices are highly productive

• The “true cost” of food is at least double the market price when include environmental and health costs
GOALS OF A HEALTHY SOIL LAW

- Reduce GHG emissions (CH4, N2O, CO2)
- Increase soil carbon
- Support key soil health principles (e.g. of NRCS or Rodale Institute):
 - Maximize soil surface cover
 - Minimize disturbance of soil
 - Maximize above- and below-ground diversity
 - Maintain continuous living roots in soil
 - Reduce and limit chemical inputs
 - Incorporate animals on cropland
ALTERNATIVE PRACTICES (1): CROPLAND MANAGEMENT

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>GHG Reduction</th>
<th>Public Benefits</th>
<th>Private Benefits</th>
<th>Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop rotations</td>
<td>0.22 – 0.26 Mg CO2e / acre per year</td>
<td>• Reduce erosion • Improve water quality, soil moisture • Soil carbon seq.</td>
<td>• Reduce fertilizer, pesticide, irrigation costs • Economic resilience</td>
<td>• Equipment needs • Labor costs • Market and infrastructure for new crops</td>
</tr>
<tr>
<td>Cover Crops</td>
<td>0.26 – 0.37 Mg CO2e / acre per year</td>
<td>• Reduce erosion • Improve water quality • Pest suppression • Soil carbon seq.</td>
<td>• Reduce fertilizer, pesticide costs • Reduce on-farm energy use • Improve yield</td>
<td>• Agronomic concerns; interference with cash crop • Equipment needs</td>
</tr>
<tr>
<td>No-till</td>
<td>0.31 – 0.35 Mg CO2e / acre per year</td>
<td>• Reduce erosion • Improve water and air quality • Prevent soil carbon loss</td>
<td>• Soil health • Reduce fertilizer, irrigation costs • Reduce on-farm energy use</td>
<td>• Agronomic concerns; yield and profitability • Greater herbicide use</td>
</tr>
</tbody>
</table>
ALTERNATIVE PRACTICES (2): NUTRIENT MANAGEMENT

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>GHG Mitigation</th>
<th>Public Benefits</th>
<th>Private Benefits</th>
<th>Barriers</th>
</tr>
</thead>
</table>
| Improve N fertilizer management | 0.06 – 0.15 Mg CO2e / acre per year | • Reduce N2O emissions
• Minimize water pollution
• Improve air quality (reduce odors, PM) | • Improve soil quality
• Improve nitrogen use efficiency
• Reduce fertilizer input and costs | • Higher costs of technology and equipment needs
• Agronomic concerns and uncertainty; yield, efficacy |
| Organic soil amendments | 1.00 – 1.75 Mg CO2e / acre per year | • Reduce CH4 and N2O emissions
• Minimize water pollution
• Improve air quality (reduce odors, PM) | • Improve soil quality
• Reduce irrigation and fertilizer costs
• Slow release of nutrients | • More expensive than synthetic fertilizer
• Agronomic concerns; efficacy
• Composting labor and costs |
ALTERNATIVE PRACTICES (3): ANIMAL MANAGEMENT

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>GHG Mitigation</th>
<th>Public Benefits</th>
<th>Private Benefits</th>
<th>Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational grazing</td>
<td>0.18 – 0.26 Mg CO2e / acre per year</td>
<td>• Soil health
• Prevent overgrazing
• Reduce N2O
• Soil carbon seq.</td>
<td>• Forage quality
• Reduce feed use
• Weed control
• Extend grazing season</td>
<td>• Fencing and labor costs
• Production per animal concerns
• Land availability</td>
</tr>
<tr>
<td>Cropland to pasture</td>
<td>0.22 – 0.37 Mg CO2e / acre per year</td>
<td>• Reduce erosion
• Minimize water pollution
• Prevent soil carbon loss</td>
<td>• New revenue; economic diversity
• Forage supply and quality</td>
<td>• Market trends
• Fencing, labor, mgmt. costs
• Food safety regulations</td>
</tr>
<tr>
<td>Dry manure storage</td>
<td>N/A (see “Organic soil amendments”)</td>
<td>• Reduce CH4 and N2O emissions
• Minimize run-off and water pollution</td>
<td>• Less volume than liquid to store
• Reduced odors
• High nutrient retention</td>
<td>• Labor needs in collection and handling
• Equipment needs</td>
</tr>
</tbody>
</table>
ALTERNATIVE PRACTICES (4): AGROFORESTRY AND HERBACEOUS COVER

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>GHG Mitigation</th>
<th>Public Benefits</th>
<th>Private Benefits</th>
<th>Barriers</th>
</tr>
</thead>
</table>
| Alley cropping | 0.81 – 1.74 Mg CO2e / acre per year | • Increase water retention and nutrients
• Biodiversity
• High C storage | • Soil health
• Erosion control
• Provide shade
• Reduce fertilizer needs and costs | • Long return on investment; high initial labor/costs
• Management and knowledge |
| Silvopasture | 0.66 – 1.34 Mg CO2e / acre per year | • Prevent overgrazing
• Improve water quality
• High C storage | • Optimize forage and timber production
• Provide shade
• Weed control | • Regulatory limitations on harvest
• Management and knowledge |
| Buffer strips | 1.13 – 1.26 Mg CO2e / acre per year | • Reduce nutrient loss, run-off
• Improve water quality
• Biodiversity | • Soil health
• Reduce flooding
• Help meet pollution control requirements | • “Hassle” of program (ex. CRP) enrollment
• Loss of commodity acres |
AGRO-ECOLOGICAL PRACTICES CAN MAKE AGRICULTURE CARBON NEUTRAL (AND MORE)
ALTERNATIVE PRACTICES NEED INCENTIVES TO INCREASE ADOPTION

- Agro-ecological practices are very effective, but not widely employed
 - >85% of USDA survey participants would NOT adopt structural conservation practices without outside funding

<table>
<thead>
<tr>
<th>PRACTICE</th>
<th>US</th>
<th>NEW YORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover crops</td>
<td>3% of all cropland acres</td>
<td>5% of all cropland acres</td>
</tr>
<tr>
<td>No-till</td>
<td>25% of all cropland acres</td>
<td>6% of all cropland acres</td>
</tr>
<tr>
<td>Certified organic</td>
<td><1% of all US farms</td>
<td>3% of NY farms</td>
</tr>
</tbody>
</table>

*Less than a third of “no-till farms” are truly no-till.
CURRENT NEW YORK STATE POLICIES AND FUNDING (1)

- **Climate Resilient Farming Program** ([link](#))
 - $6 million in funding over past 4 years - most $ to adaptation; could direct more to soil health
 - $2.1M for manure storage
 - $1.9M for water management
 - $1M for soil health practices – mostly for ~8,000 acres of cover crops (~$100/acre)

- **2019 State of the State** ([link](#)): Governor Cuomo proposes to **double** state funding for the CRF program
 - “Incorporate forest and agricultural carbon into New York’s greenhouse gas inventory and climate strategy”
 - Set soil carbon sequestration goal
 - New forestry grant program
CURRENT NEW YORK STATE POLICIES AND FUNDING (2)

- **Methane Reduction Plan** ([link](#))
 - Develop on-farm digesters
 - Expand CRF to highlight gas capture
 - Update designs of storage systems; BMP’s for animal feeding

- **Climate Adaptation Plan** ([link](#))
 - Climate Smart Communities (no ag yet)
 - Not soil health focused

- **Carbon Farming Act (proposed)**
 - Tax credit for farmers who sequester soil C

- **New York Soil Health Initiative** ([link](#))
 - DAM & DEC contract with Cornell to research practices and policies
 - Stakeholder strategy outlined in “Soil Health Roadmap”
POLICIES TO ACCELERATE SHIFT TO CLIMATE-FRIENDLY PRACTICES (1): EDUCATION, OUTREACH AND RESEARCH

• Knowledge, information and capacity is major barrier for all practices

• Educational and technical support from:
 • Cornell Cooperative Extension
 • NRCS agents and offices in each county
 • Farmer-to-farmer networks
 • On-farm demonstrations and workshops

• **However**, the majority of NRCS funds and grants still support conventional agriculture

NOFA-NY field day at Poughkeepsie Farm Project (2018)
POLICIES (2): FEDERAL FINANCING

• Environmental Quality Incentives Program (EQIP)
 • Funded projects often counter-productive (irrigation, CAFOs)
 • 2018 Farm Bill allows states to provide 90% cost share to 10 “best practices”

• Conservation Stewardship Program (CSP)
 • 2018 Farm Bill retained program
 • States can direct toward best practices for organic transition
POLICIES (3): BUFFERS AND EASEMENTS

- Conservation Reserve Program (CRP)
 - Program often provides only temporary benefits
 - Accumulated soil carbon is lost when CRP contracts expire and land is put back in production
 - 2018 Farm Bill allows 30-year contracts on pilot basis

- States can expand Agricultural Conservation Easement Program (ACEP)
POLICIES (4): OTHER FINANCIAL SUPPORT

• Market assistance
 • Assist infrastructure for additional crops
 • Help build market for new crops (e.g. hops; grains for spirits; new or ancient grains through advertising, etc.)

• Equipment loans
 • Aid in covering costs of new equipment necessary to implement practices
 • Ex. No-till seed drills for producers

• Preferential purchasing/promotion
 • Govt. purchasing could give preference to organic or other climate-friendly food
 • Example: New York Grown and Certified (70% people said they would buy more; 50% would pay more)
Policies (5): Additional Mechanisms

- **Crop insurance**
 - Provide transition crop insurance for farmers transitioning from conventional to sustainable practices (e.g. organic, no-till, cover crops)
 - Impose additional conditions (e.g. BMPs), on crop insurance, such as expanding the Sodsaver Provision

- Add environmental practice conditions (e.g. BMPs, buffers, cover crops, etc.) on agricultural district designations

- Stricter drinking water protections
 - Ex. impose limits on CAFO manure spreading
EXISTING STATE HEALTHY SOIL LAWS (1)

- **California**: SB859 and AB 1613 (2016)
 - Create Healthy Soils Program
 - Define healthy soils, coordinate agency efforts, R&D, incentives, education
 - $7.5M for program and demonstrations

- **Hawaii**: HB 1578 (2017)
 - Identifies, measures, encourages practices to improve soil health
 - Promotes C seq, compost, and agroforestry
 - $25,000

- **New Mexico**: HB 1578 (2019)
 - Define healthy soils and ID’s practices
 - Includes: soil assessment and education program, healthy soil advisory board, workshops and training
 - Creates “soil health champions”
 - $5.15M for program (FY2020)
EXISTING STATE HEALTHY SOIL LAWS (2)

- **Maryland**: HB 1063 (2017)
 - Defines and supports healthy soils by directing the Agricultural Department to support practices through incentives, R&D, possible funding

- **Oklahoma**: HB 1192 (2001)
 - Creates advisory committee to identify and support practices through R&D, education
 - Funding and opportunities for carbon trading

- **Utah**: HCR 8 (2015)
 - Calls on all agencies “with authority to manage lands to increase soil carbon sequestration
PROPOSED STATE HEALTHY SOIL LAWS

- **New York:** A 3281 (2017)
 - Defines carbon farming using USDA COMET-Planner and COMET-Farm
 - Establishes tax credit to encourage C seq.

- **Vermont:** S 43 (2017)
 - Requires the Sec. of Natural Resources to establish a regenerative soils program
 - Incentivize C seq. with certification and marketing program, technical and financial assistance

- **Massachusetts:** HB 3713 (2017)
 - Defines and promotes healthy soils practices

- Legislation drafted in **Connecticut, Iowa, Illinois, Kansas, Kentucky, Missouri, Colorado**
<table>
<thead>
<tr>
<th>State</th>
<th>Water Quality/Quantity Goal</th>
<th>Curb Climate Change Goal</th>
<th>Other Goals</th>
<th>Healthy Soil Definition</th>
<th>Specific Practices Identified</th>
<th>Committee, task force, or coordinated agencies</th>
<th>Research/Education</th>
<th>Technical Assistance</th>
<th>Funding Assistance/Financial Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Yields, erosion, air</td>
<td>No-till, cover crops, compost, grazing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>$7.5MM</td>
</tr>
<tr>
<td>HI</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Resilience, trading</td>
<td>Compost, agroforestry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>$25,000 for study</td>
</tr>
<tr>
<td>MD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Yields</td>
<td>DoA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Trading</td>
<td>Trees, conservation, re-vegetation</td>
<td>✓</td>
<td>✓</td>
<td>Measurement</td>
<td>Creates fund</td>
</tr>
<tr>
<td>UT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Productivity, biodiversity</td>
<td>Advance forestry, grazing</td>
<td>✓</td>
<td>✓</td>
<td>“Encourage”</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Regenerative agriculture</td>
<td>No-till, cover crops, grazing, integrated</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Creates fund</td>
</tr>
<tr>
<td>NY</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Yields</td>
<td>Carbon farming</td>
<td>✓</td>
<td>✓</td>
<td>Certificate</td>
<td>Tax Credit</td>
</tr>
<tr>
<td>VT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Resilience</td>
<td>Performance based</td>
<td>✓</td>
<td>✓</td>
<td>Certificate</td>
<td>Marketing Program</td>
</tr>
</tbody>
</table>
POSSIBLE KEY ELEMENTS OF MODEL LAW

• **Findings:** Benefits of health soils
• **Define:** Healthy soils
• **Goal:** To increase adoption of practices that create healthy soils

• **Actions:**
 1) Require agencies to consider and coordinate
 2) Identify healthy soil practices and goals
 3) Provide funding for R&D and demonstration projects
 4) Provide education, training, and technical assistance
 5) Provide financial incentives – either payments for practices or tons of carbon sequestered
 6) Work group to propose
 7) Create preferential purchasing and marketing programs and certification programs
 8) Create transition insurance program to help counter risk of adopting healthy soil practices

• **Funding Options:**
 • General funds
 • Fertilizer surcharge, storm water fee, or other impact fee (parallel to environmental benefit charge)
 • Funds from carbon cap and trade program, or carbon fee
 • Redirect federal EQIP, CSP, etc. funds to preference soil health practices
ADDITIONAL RESOURCES (1)

• U.S. Department of Agriculture (USDA)
 • $15.9M in funding for microbiome research
 • $71M in funding for “10 Building Blocks for Climate Smart Agriculture”

• USDA Natural Resources Conservation Service (NRCS)
 • “Unlock the Secrets in the Soil” (link)

• Regenerative Agriculture Initiative (link)
 • Supports this definition: “a holistic land management practice that leverages the power of photosynthesis in plants to close the carbon cycle, and build soil health, crop resilience, and nutrient density.”
 • Annie’s, Cascadian Farms, Ben & Jerry’s, Dr. Bronner’s, Organic India and Nutiva

• Samuel Roberts Noble Foundation (link) & the Farm Foundation (link)
 • Soil Health Institute (link); $200M in funding for agricultural research

• Soil Health Partnership (link)
 • Quantify benefits of improved agricultural practices; technical assistance for farmers
ADDITIONAL RESOURCES (2)

• U.S. Climate Alliance ([link](#))
 • Helps states achieve climate goals with natural & working lands management
 • Partnership includes: American Farmland Trust, American Forests, C-AGG (see below), The Nature Conservancy, Trust for Public Land, World Resources Institute

• Coalition on Agricultural Greenhouse Gases (C-AGG) ([link](#))
 • Multi-stakeholder organization that develops sustainable policies/programs/tools

• Northeast Organic Farming Association ([link](#))
 • State chapters in NY, MA, CT, NH, NJ, RI, VT
 • Advocate for organic farming, build community and support for producers implementing organic practices (NOFA Interstate Policy Committee)

• Foundation for Food and Agriculture Research ([link](#))
 • Established as part of the 2014 Farm bill with initial $200M funding for R&D
 • Grant opportunities for organizations and universities to advance food and ag science
 • Fosters public-private partnerships
ADDITIONAL RESOURCES (3)

• Organic Farming Research Foundation (link)
 • Grant opportunities and advocacy for organic research, education and federal policies
 • Recipient of $66,000 matching grant from FFAR for research projects on soil health

• U.S. Dept. of Energy’s Advanced Research Projects Agency (link)
 • $30M in funding for Rhizosphere Observations Optimizing Terrestrial Sequestration program

• USDA National Institute of Food and Agriculture (link)
 • $8M in funding for understanding various microbiomes and their effects on food production systems

• Legal Pathways to Carbon-Neutral Agriculture (report link)
 • Peter Lehner & Nate Rosenberg (2017). Environmental Law Reporter.